

Quantum Computing @ Leonardo Labs

Daniele Dragoni P.I.

Alberto Bianchi

INSIDE Connect 2025

Connect Our Community, Shape Our Future

Space

Unmanned Systems

Aerostructures

Electronics

Helicopters

Aircraft

Cyber & Security

Quantum Computing Lab in a Nut-shell

Daniele Dragoni PhD Principal Investigator

Alessandra Lignarolo Researcher

Matteo VandelliPhD Researcher

The Team

Francesco Ferrari PhD Researcher

Francesco Turro PhD Researcher

Marco Maronese PhD Researcher

Quantum Computing Lab

Mission

Explore **opportunities & challenges** of QC to evaluate practical utility – build **inhouse expertise** to generate pre-competitive advantage

Vision

Deliver Quantum Computing solutions for **LDO Divisions** and *key* **External Clients**

Positioning

Many HW platforms with rapid advancements but ALL small with Pros & Cons

- → Focus on algorithm development
- → Develop in-house HPC emulation capabilities
- → Benchmark most promising platforms
- → Investigate QC and HPC HW integration

Quantum Computing Streams

FULL QUANTUM algorithms/methods

- Real Q-Hardware (hybrid) or Q-Emulators (HPC)
- Lighthouse projects with internal use cases at small scale

LONG TERM

QUANTUM INSPIRED algorithms/methods

- Ideas from quantum world → transpose into algorithms for digital HW
- Scale-up lighthouse projects → impact LDO chain value

NEAR/MID TERM

Computing Infrastructures

PENNYLANE

DAVINCI-1 HPC

- **60 CPU nodes** 2x24 cores Intel Xeon, 1TB RAM
- **80 GPU nodes** 2x24 cores AMD 0.5/1TB DRAM memory, 4 NVIDIA GPUs **OVIDIA**.
- 20 PB storage capacity
- 5 petaflops
- Libraries: Qiskit, cuQuantum, Qibo, Pennylane, ...
- Up to **36 qubit** exactly emulated (40-qubit target)
- Up to **1000 qubit** approximately emulated (10k target)

Quantum Resources

- Exploit cloud-based services for Quantum (free, payper-use)
- Contribute to developing European devices to maximize industrial exploitation
- Support installation of on-prem solutions for Italian ecosystem
- Scouting on-prem solutions for Leonardo

QC Application Clusters

Combinatorial Optimization

Logistics/Teleco (planning, routing, scheduling,...)

SPRINGER NATURE

Publisher: IEEE | Cite This | PDF

Evaluating the practicality of quantum optimization algorithms for prototypical industrial applications

Published: 09 October 2024

Volume 23, article number 344, (2024) Cite this article

Matteo Vandelli Matteo Vandelli

sebastiano Coril; Daniele Dragoni; Massimiliano Proietti; Massimiliano Dispenza; Carlo Cavazzoni; Enrico Prati All Authors

Mathematics > Combinatorics

[Submitted on 12 Jun 2024]

Testing Quantum and Simulated Annealers on the Drone Delivery Packing Problem

Sara Tarquini, Daniele Dragoni, Matteo Vandelli, Francesco Tudisco

Machine Learning

Computer vision, NLP, ... (Detection, Classification, Feature Extraction, GM, ...)

Physical Simulations

Computational Fluid Dynamics (Navier-Stokes), Quantum chemistry/materials (correlated systems)

Cryptography

How far from breaking classical encryption protocols ??

Combinatorial Optimization: The Antenna Problem

ACAT:

Approaches to Scale up Quantum Optimization Algorithms for Industrial Aerospace & Telecommunication applications

Goal: optimal deployment of reconfigurable antenna networks on territory with rescuers for disaster response applicataions

Methodology: Emulation on davinci-1 and execution on Quantum devices

Problem Size: GPU emulation and solution quality verification up to 30+ qubits – evaluate results on Q-devices

https://link.springer.com/article/10.1007/s11128-024-04560-1

Evaluating the practicality of quantum optimization algorithms for prototypical industrial applications

lume 23, article number 344, (2024) Cite this art

Area covered by antennas

Devices

Approaches to Tackle the Problem

Ion Traps & Neutral atoms quantum devices

- «True» quantum approach
- Encoding QAOA into physical devices
- Additional encoding to unit disk graph needed for neutral atoms

Multiple QUBO formulations with increasing levels of realism and mathematical complexity

$$\sum_{i \neq j} \tilde{J}_{ij} z_i z_j + \sum_i \tilde{A}_i z_i$$

Tensor network approach

- Quantum-inspired approach
- Variational ground state search
- Ready to use

© 2022 Leonardo - Società per azioni SPOKE 10 : ACATI

Physical Simulations: Computational Fluid Dynamics

Centro Nazionale di Ricerca in HPC,
Big Data and Quantum Computing

SPOKE 10 Innovation Grant

Quantum Algorithms for the solution of differential equations

- GOAL: Achieve a better understanding of the potential (dis)advantage of using Quantum Algorithms for solving partial differential equations (PDEs)
- Focus on Industrial relevant Applications (Linear and non-Linear eqs)
 - Navier-Stokes eqs for Fluid Dynamics and Design Optimization
 - Darcy eqs for Geophysics/Fluid Dynamics in porous media and Geo-sequestration of CO2

THANK **YOU**FOR YOUR ATTENTION

leonardo.com

INSIDE Connect 2025

Connect Our Community, Shape Our Future

QUANTUM COMPUTING | Leonardo